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ABSTRACT
Motivation: The constituent amino acids of a protein work
together to define its structure and to facilitate its function.
Their interdependence should be apparent in the evolution-
ary record of each protein family: positions in the sequence
of a protein family that are intimately associated in space or
in function should co-vary in evolution. A recent approach by
Ranganathan and colleagues proposes to look at subsets of
a protein family, selected for their sequence at one position, to
see how this affects variation at other positions.
Results: We present a quantitative algorithm for assessing
covariation with this approach, based on explicit likelihood
calculations. By applying our algorithm to 138 Pfam families
with at least one member of known structure, we demon-
strate that our method has improved power in finding physically
close residues in crystal structures, compared to that of
Ranganathan and colleagues.
Contact: gary_yellen@hms.harvard.edu
Supplementary information: www.afodor.net/bioinfosup.html

INTRODUCTION
It has long been appreciated that evolutionary correlation
could provide information about protein structure (Neher,
1994; Atchleyet al., 1999; Larsonet al., 2000; Kass and
Horovitz, 2002). Most previous approaches have used cor-
relation functions to assess co-variation between positions in
a protein, with the main goal of predicting contacts between
amino acids that are not adjacent in the linear sequence (Gobel
et al., 1994; Thomaset al., 1996; Olmeaet al., 1999). The
basic assumption underlying these studies is that such contact
residues in a protein should demonstrate mutually constrained
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patterns of amino acid substitution. When these co-variation
methods predict a contact that is not borne out by structural
analysis, the ‘spurious’ predictions may be evolutionary noise,
or they may correspond to bona fide co-variation at a dis-
tance. For instance, many types of allosteric conformational
changes involve a physical perturbation that must communic-
ate energetically through the structure of the protein with the
active site conformation. Lockless and Ranganathan (1999)
and Suelet al. (2003) have proposed to search for networks
of co-varying residues that might reveal such conformational
fault lines.

Their analytic approach begins with the application of some
constraint on the distribution of residues at a chosen pos-
ition in a multiple sequence alignment (MSA). The subset
of sequences conforming to this constraint is selected, and
the degree of bias present in the distribution of residues at
each other position in this subset is assessed. The overall
strategy of this approach is novel and potentially powerful
because its central subsetting operation allows the hypothesis-
driven exploration of co-variation occurring in response
to freely chosenin silico evolutionary ‘perturbations’. For
instance, one may choose to subset the MSA according
to physicochemical classes of perturbations that are found
experimentally to alter ligand binding, allosteric coupling
or conformational equilibria. This approach therefore differs
fundamentally from previous methods developed to calculate
global pairwise co-variation statistics (Gobelet al., 1994;
Neher, 1994; Thomaset al., 1996; Olmeaet al., 1999;
Atchley et al., 2000; Larsonet al., 2000; Kass and Horovitz,
2002).

However, the co-variation algorithm proposed by Lockless
and Ranganathan (1999) for use in this method, which is
based loosely on an analogy to Boltzmann’s statistical mech-
anics, lacks a rigorous connection to the actual statistics
of co-variation. We present here an alternative algorithm
for quantifying evolutionary co-variation based on explicit

Bioinformatics 20(10) © Oxford University Press 2004; all rights reserved. 1565



J.P.Dekker et al.

Fig. 1. Application of the ELSC algorithm to a simple, hypothetical alignment. (A) A hypothetical alignment for which the perturbation is
taken to be the presence of tyrosine in columni, a constraint that yields a sub-alignment of the four sequences above the horizontal line.
(B) The details of the ELSC calculation for the given sub-alignment for columnj = 5. The count of residues in the idealized subalignment (m)
represents the number of each kind of residue that would be in columnj in the sub-alignment if the residue composition in the sub-alignment
were identical to the residue composition in columnj of the full alignment. (C) The ELSC calculation for the given sub-alignment for columns
j = 1–6.

likelihood calculations that, when applied to a set of 138 Pfam
families, appears to have greater power than the Lockless
and Ranganathan method in predicting residue proximity in
crystal structures.

SYSTEM, ALGORITHMS AND METHODS
Perturbation-based co-variance
Perturbation-based co-variance algorithms (Lockless and
Ranganathan, 1999; Suelet al., 2003) work by choosing a
subset of sequences in an MSA and comparing the char-
acteristics of the subset with the characteristics of the full
alignment. Consider two columnsi and j in an MSA. We
begin by choosing a subset of sequences from the full set by
placing a constraint on the identity of the residue occupy-
ing positioni in the alignment. For instance (Fig. 1A), one
may choose the subset of sequences containing tyrosine at a
particular position,i. Next, we quantify the degree of bias
present in the distribution of residues at a second position,j ,
in this subset. In the case that substitutions at positionsi and
j occur independently throughout the sequences sampled by
the MSA, the distribution of AAs at positionj in the subset
should be similar to the distribution at that position in the full
MSA. However, if the two positions co-vary, the composition
at positionj in the subset may be biased by the constraint
placed on positioni.

Statistical coupling analysis
In this paper, we compare the performance of two
perturbation-based co-variance algorithms. The first of these,
statistical coupling analysis (SCA), has been described
previously (Lockless and Ranganathan, 1999; Suelet al.,
2003), although the description of the algorithm that follows
has significant differences from the published description (see
Detailed methods section) . The SCA method is described in
terms of metaphorical ‘energies’ (�G’s), which correspond
roughly to log (probabilities). The description of the SCA
algorithm (Lockless and Ranganathan, 1999) begins with an
‘overall empirical evolutionary conservation parameter’ for
each columni in the alignment:

�Gi =
√∑

x

(
ln P x

i

)2
,

wherex spans from 1 to 20 for all amino acid residues and is
related to the probability of finding the observed number of
x residues in columni. (Here, we ignore the authors’ meta-
phorical prefactor,kT*, as it represents an undefined scalar
that does not impact the present analysis.) The parameterP x

i

is calculated using a function in binomial form that compares
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the frequency in the given column with the ‘mean frequency
in all proteins’:

P x = N !
nx !(N − nx)!p

nx

x (1 − px)
N−nx ,

whereN is set arbitrarily to equal 100,nx is the numerical
percentage of sequences with residuex at the given position
andpx is the ‘mean frequency of amino acidx in all positions’
as determined from all Swiss-Prot entries. We note that as a
consequence of the authors’ chosen definitions ofN andnx ,
which seem difficult to rationalize, the calculated parameter,
P x , is related to, but is not equivalent to, the ‘probability of
any amino acidx at sitei’, as the authors claim.

We have found that the�Gi measurement is well correlated
to a common measure of conservation known as sequence
entropy (Shenkinet al., 1991),Hi :

Hi = −
∑
x

[px(i) ln px(i)],

where i is the column of interest,x spans the 20 possible
amino acid residues andpx(i) is the frequency of residuex
at positioni. The median Spearman rank-order correlation
coefficient (Presset al., 1995) between the sequence entropy,
Hi , and�Gi is ∼−0.92 for 138 alignments where columns
with > 50% gaps have been removed (see Supplementary
Figure 1 online). This high degree of correlation between
the two measures suggests that despite the comparison of
amino acid frequencies with background frequencies from
all Swiss-Prot entries and the modified binomial calculations,
the SCA�Gi parameter is essentially a measure of column
conservation.

The SCA algorithm uses as its co-variance measure for a pair
of columns (i, j ) the parameter��Gi, j , which the authors
refer to as the ‘statistical coupling energy’.��Gi, j is related
to the difference between the�Gi values for the full alignment
and the sub-alignment summed over all 20 amino acids as
follows:

��Gi,j =
√∑

x

(
ln P x

i|δj − ln P x
i

)2
.

Here, theP x
i|δj conditional term represents the modified bino-

mial probability,P x
i , as defined for columnj for the sequences

in the sub-alignment created by the perturbation at columni.
That is, P x

i in the equation is calculated for the full align-
ment, whileP x

i|δj is calculated for the sub-alignment. The
SCA algorithm works, therefore, by looking for differences
in the degree of conservation between the sub-alignment and
the full alignment in columnj .

Explicit likelihood of subset co-variation
The formulation of the SCA algorithm does not lend itself
to a straightforward statistical interpretation of the resulting

correlation values. We reasoned that an approach with a more
direct connection to the statistics of co-variation would yield
a different form of perturbation-based co-variance algorithm,
which might have significantly different properties. As above,
we seek a co-variance score for a pair of columns (i andj ),
where we select a subset of the MSA by constraining the iden-
tity of the AA in columni and then examine the effect on each
other positionj . (In our notation, we use capitalNs to describe
properties of the full MSA and smallns to describe properties
of the subset; for instance,Ntotal is the number of sequences in
the full MSA andntotal the number in the subset.) After select-
ing a subset, we calculate the observed AA composition of the
subset at positionj . We then ask, given the AA composition
at positionj in the full MSA, how many possible subsets of
sizentotal would have at positionj exactly the observed com-
position ofnala,j alanines,nasn,j asparagines,nasp,j aspartic
acids, etc. The number of such combinations is given exactly
by �<i>

j :

�<i>
j =

(
Nala,j

nala,j

)
·
(

Nasn,j

nasn,j

)
·
(

Nasp,j

nasp,j

)
· · · =

∏
r

(
Nr,j

nr,j

)
.

Here,Nr,j denotes number of residues of typer at positionj
in the full MSA, andnr,j denotes number of residue typer at
positionj in the constrained subset. The combinatorial factor(

Nala,j

nala,j

)
= Nala,j !

nala,j !
(
Nala,j − nala,j

)!
gives the number of different ways of choosing the exact
number of alanine-containing sequences actually found in the
subset (nala,j ) from the total number of alanine-containing
sequences in the full MSA (Nala,j ). Because this choice for
each amino acid is independent of the others, the total number
of possible subsets with the given composition is given simply
by the product of these combinations,�<i>

j .

If we then divide�<i>
j by the total number of possible

subsets of sizentotal, we arrive at the exact probability that a
random selection of a subset of sizentotal from the MSA will
give the observed amino-acid composition at positionj in the
constrained subset. This probability is given byL<i>

j :

L<i>
j =

∏
r

(
Nr,j

nr,j

)
(

Ntotal

ntotal

) .

Given that different MSAs and subsets will differ in size and
combinatorial complexity, we also calculate a normalized
statistic that gives the probability of drawing the observed
composition at random relative to the probability of drawing
the most likely composition. For this normalization, we first
construct an ideally representative subset, whose values we
denotemr,j . To do this, we compute the set of integral val-
ues wheremr,j ≈ (

Nr,j /Ntotal
) · ntotal. This is implemented
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by calculating the decimal values ofmr,j and then rounding
each of these decimals to integer values with the constraint
that

∑
r mr,j = ∑

r nr,j . Once this ideal subset ofmr,j has
been constructed, the probability of drawing this subset from
MSA at random is given byL<i>

j ,max:

L<i>
j ,max =

∏
r

(
Nr,j

mr,j

)
(

Ntotal

ntotal

) .

We then compute the normalized ratio,L<i>
j /L<i>

j ,max, which

we denote�<i>
j :

�<i>
j ≡ L<i>

j /L<i>
j ,max =

∏
r

(
Nr,j

nr,j

)
(

Nr,j

mr,j

) .

In order to compare the results of this algorithm with the res-
ults of SCA, the scores of which are related to the logarithms
of probabilities, we take− ln �<i>

j as our score for a pair of
columns (i, j ). Figure 1 shows this algorithm, which we call
Explicit Likelihood of Subset Co-variation (ELSC), applied
to a simple, hypothetical alignment.

DETAILED METHODS
The Pfam 7.7 (October 2002) text archive was downloaded.
All alignments that did not have a>95% match to a crys-
tal structure in the Protein Data Bank (PDB) database were
removed from the analysis set. In an attempt to correct for
apparent co-variation due to a common phylogenetic origin
of closely related sequences, duplicate sequences with greater
than 90% identity were removed from the alignments. All
alignments that did not have at least 50 of these non-duplicate
sequences were removed from our analysis. All columns that
did not have at least 50% non-gapped residues were removed
from the alignments. For the purposes of this paper, we
constructed our ‘perturbation’ subsets by constraining each
position i to contain only the most conserved residue. For
example, if at positioni in an alignment, glycine is the most
conserved residue, accounting for 24% of the residues at this
position, then our sub-alignment would consist of the 24% of
the sequences that have a glycine at positioni. It should be
noted that while we and the original SCA papers (Lockless and
Ranganathan, 1999; Suelet al., 2003) use conserved residues
as the perturbation constraint, this choice is arbitrary and any
constraint yielding appropriately large sub-alignments could
in principle be used. The effect of perturbation constraint
choice on the calculated co-variation scores was not addressed
in this study. CLUSTALW was used to map the sequences
in the alignment to residues in PDB files for which Cβ–Cβ

(Cα for glycine) distances were measured. In order to avoid

trivial residue contacts, all residue pairs within eight residues
in the primary sequence were removed from the data set. The
methods used for calculation of pair distance were identical
to those described previously (Fodor and Aldrich, 2004). All
Java code used to make the figures is available on request.

For all SCA calculations in our paper, we used Windows
binaries, which were generously distributed by the Rangan-
athan laboratory. Our definitions of��G, �G, andP x in the
results section are based on our reading of the C source code
that we received as part of this distribution. These definitions
differ from those described by the authors in their original
paper (Lockless and Ranganathan, 1999), which forP x state
that ‘N is the total number of sequences’, and ‘nx is the num-
ber of sequences with amino acidx’. One can tell by inspection
that these original descriptions ofN andnx must be incorrect
as they would lead to any conserved columnj generating
a high��Gi,j score since binomial probabilitiesP x

i scale
exponentially with the number of identical residues and in a
highly conserved columnj there have to be fewer identical
residues in the sub-alignment than the full alignment. Indeed,
we have found that with the published definition of SCA the
average�Gi score for a pair of columns (i, j ) was highly
correlated with the��Gi,j score (data not shown). That is,
as originally described, SCA conservation was essentially the
same thing as SCA co-variance. In addition, the original paper
stated that eachP x

i term for each residue type should be nor-
malized by a value related to ‘a hypothetical site where all
amino acids are found in their mean frequencies in the MSA’.
In the distributed binaries, no such normalization takes place.
We checked the output of the Windows SCA binaries by cre-
ating a Java implementation of the SCA algorithm as defined
in our paper and found a perfect correlation (data not shown,
Java code available upon request). We are therefore reasonably
confident that our description of the SCA algorithm is correct,
despite significant differences with the published description.

The SCA algorithm treat gaps in alignments in a some-
what different way from the ELSC algorithm. Consider the
following column in an alignment:

A
A
−
C
C

When counting the number of sequences in the alignment, the
ELSC algorithm discards gaps. The ELSC algorithm, there-
fore, would consider the frequency of A and C to be 2/4 and
the total number of residues in the column to be four. The SCA
algorithm as implemented in the Windows binaries, however,
counts the gaps and would therefore view the frequencies of A
and C to be 2/5 and the total number of residues in the column
to be five. We implemented a version of the SCA algorithm
that does not count gaps and found that this version was gener-
ally well correlated with the version of the SCA algorithm that
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does count gaps. For the 138 alignments used in this study, the
median Pearson correlation coefficient between the two SCA
implementations was∼ 0.9, although the version of the SCA
algorithm that did not count gaps performed slightly worse
in finding pairs of physically close residues (data not shown).
We are therefore confident that the differences between the
ELSC and SCA algorithms described in our paper are not the
result of the two algorithms treating gaps differently.

The SCA algorithm requires columns to meet a certain
threshold of ‘statistical equilibrium’ (Suelet al., 2003).
In order to meet this requirement, we ran each of the Pfam
alignments through the ‘RandomElim’ program in the SCA
package with the default parameters. Following the guidelines
posted on the author’s Web site (http://www.hhmi.swmed.edu/
Labs/rr/world/sca/sup_figure2.pdf), we chose as our cutoff
value the smallest number of sequences for which the
‘RandomElim’ program in the SCA package gave a value
of over 0.07. For example, for the Pfam alignment 2-
Hacid_DH_C, we got a cutoff value of 31%. This is interpreted
by the authors of the SCA package to mean that any sub-
alignment with fewer than 31% of the sequences is not
in ‘statistical equilibrium’ and will not generate meaning-
ful results when analyzed by the SCA package. Since the
‘perturbation’ that created the sub-alignment is based on con-
served residues, this requires that each columni that does
not have a single residue in at least 31% of the sequences
should be excluded from the analysis. So, for example, if
a three column alignment was highly conserved in column
1 but poorly conserved in columns 2 and 3, we would gen-
erate scores under SCA only for columns (1, 2) and (1, 3).
Removing poorly conserved columns in this way does lead
to marginal improvements in the SCA algorithm when com-
pared with a data set in which poorly conserved columns
were included (Fodor and Aldrich, 2004). We removed from
our data set any alignment that did not have at least 100i

columns that met the criteria for inclusion by the SCA pack-
age. Applying these criteria to our original set of alignments
yielded a set of 138 alignments (listed in the supplementary
materials), which were used in this paper. In order to per-
form a fair comparison, we only generated (i, j ) scores for
the ELSC algorithm that were also generated for the SCA
algorithm.

One final consideration concerns the assignment of columns
i andj for the co-variation calculation. Since it need not be
the case that SCA(i, j) = SCA(j , i) or that ELSC(i, j) =
ELSC(j , i), we constrained the relationship betweeni andj

such that it was always true thatj > i and then performed the
co-variation calculation for this pair only. Thus, for columns
1 and 20 in an alignment, we used the most conserved residue
in column 1 to form the sub-alignment and reported the SCA
and ELSC scores for the pair (1, 20) but not for the pair (20, 1).
Although one might imagine a number of strategies for com-
bining the (i, j ) and (j , i) scores, these were not explored in
the original SCA papers or in this study.

EXPERIMENTAL RESULTS
Algorithm performance in predicting physically
close residues
The underlying hypothesis guiding the design of algorithms
that detect correlated mutations is that if two columns in an
alignment show a high degree of correlation, the correspond-
ing residue positions in a protein should be linked either func-
tionally or energetically or by virtue of being physically close
in some important conformation of the protein. Algorithms
that measure correlated mutations in multiple sequence align-
ments have long been used to predict inter-residue contacts in
proteins (Altschuhet al., 1987), and it is reasonable to expect
that even if a correlated mutation algorithm finds networks of
energetically coupled residues (Lockless and Ranganathan,
1999; Suelet al., 2003), the residues of the network should,
on average, be closer to each other than residues drawn at ran-
dom from the protein. In order to compare the performance of
the SCA and ELSC algorithms, therefore, we took alignments
from the Pfam database that met certain criteria for sequence
diversity (see Detailed methods section) and asked how well
the algorithms were able to use the information in these align-
ments to make predictions about physically close residues in
crystal structures that correspond to one of the sequences in
the alignment. Figure 2A shows the results of this analysis
for 38 858 (i, j ) ELSC and SCA comparisons for the Pfam
family Cys_Met_Meta. They-axis shows Cβ–Cβ distances
for each calculated (i, j ) pair of columns for the 1qgn crys-
tal structure that corresponds to the Q9ZPL5 sequence in the
Cys_Met_Meta alignment. Clearly, both algorithms are able
to successfully generate some information about the structure
as represented by the fact that the highest scoring pairs of
co-varying residues (to the right on thex-axis) tended to be
physically close to each other (to the bottom of they-axis).

We can begin to quantify the power of the two algorithms
by forming a null hypothesis that an algorithm that simply
chooses pairs of residues at random could match the perform-
ance of the ELSC or SCA algorithm. To assess the probability
that this null hypothesis is true, we make an arbitrary choice to
examine only the top 75 pairs of residues for each algorithm.
This division is indicated in Figure 2 by the vertical line.
We then arbitrarily choose the 50th percentile of pair distance
(represented by the dark gray horizontal line) and ask what
the probability is that a random pairing algorithm could find
as many residues within the bottom 50th percentile of pair
distance as the ELSC and SCA algorithms. We would expect
a random pairing algorithm to choose 37.5 pairs of residues
below the 50th percentile of pair distance. In fact, the ELSC
algorithm chooses 62 out of 75 below the 50th percentile,
while the SCA algorithm chooses 56 out of 75. One can eas-
ily show (Fodor and Aldrich, 2004) that the probability that
a random pairing algorithm could match this performance is
p < 10−8 for ELSC andp < 10−4 for SCA. By this measure,
while both algorithms are statistically significant, the ELSC
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Fig. 2. Comparison of the ELSC and SCA algorithms for a single
protein family. (A) Cβ–Cβ pair distance from the 1qgn crystal
structure is shown as a function of ELSC and SCA scores for the
Cys_Met_Meta family. The vertical lines mark the top 75 pairs of
predictions, and the horizontal dark gray lines mark the 50th per-
centile of all pair distances. The light gray horizontal lines mark
the 8 Å Cβ–Cβ pair distance cutoff for the CASP definition of an
inter-residue contact. The probabilities below each graph are the
probability that a random pairing algorithm could do as well in find-
ing 75 pairs of residues below the 50th percentile of all pair distances
(see text). (B) The probability of the null hypothesis that a random
pairing algorithm could match the performance of ELSC and SCA
for all 138 Pfam families in our study for the top scoring 75 pairs
of residues. The dashed line shows thep = 0.05 level. The line
in the middle of the box is the median value. The edges of the box
are the 25th and 75th percentiles. The whiskers are the 10th and
90th percentiles.

algorithm has greater power. Of course, our choice of the top
75 pairs of residues and the 50th percentile is arbitrary. We
have found, however, that the relative power of the ELSC and
SCA algorithms is maintained even while choosing different
parameters for our test (e.g. the first 50 residues below the 25th
percentile). We argue, therefore, that our test is a reasonable
metric of the power of the algorithms, despite the presence of
these two free parameters.

We see in Figure 2A the results for a single protein family.
Supplementary Figures 2 and 3 online show Cβ–Cβ distance
plotted against ELCS and SCA score for all 138 protein fam-
ilies in our study. As in Figure 2A, the vertical lines mark
the top scoring 75 pairs of residues for each protein family
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Fig. 3. Accuracy as a function of the number of predictions made
by each algorithm. Shown are the average values for all 138 Pfam
families in our study. Accuracy is defined as the number of correctly
chosen residue contacts with Cβ–Cβ distances of≤8 Å divided by
the number of predictions made. Random indicates an algorithm that
simply chooses residue pairs at random.

and the horizontal dark gray lines mark the 50th percent-
ile of residue pair distance. Figure 2B shows the range for
the 138 families of the probability of the null hypothesis
that a random pairing algorithm could match the perform-
ance of each algorithm in finding residues below the 50th
percentile of pair distance for the highest scoring 75 pairs
of residues. By this metric, although there is a good deal of
variability in the power of both algorithms, ELSC on average
outperforms SCA.

The most common use of correlated mutation algorithms in
the literature has been as predictors of inter-residue contacts
(Gobelet al., 1994; Olmea and Valencia, 1997; Larsonet al.,
2000). The CASP contest (http://predictioncenter.llnl.gov/
casp5/) defines two residues as forming an inter-residue con-
tact if the Cβ–Cβ distance is less than or equal to 8 Å. The
light gray horizontal lines in Figure 2A and Supplementary
Figures 2 and 3 show this 8 Å cutoff position. A CASP long
range contact is defined as any inter-residue contact where
the two positions are separated by more than eight amino
acids in the primary sequence. We have removed all residue
pairs from our data set that were within eight amino acids of
each other in the PDB sequence. Our results for ELSC and
SCA, therefore, can be used to predict long range residue con-
tacts in accordance with the CASP guidelines. CASP defines
accuracy as the number of correctly predicted residue contacts
divided by the number of residue pairs submitted. Supple-
mentary Figure 4 online shows for all 138 Pfam families the
accuracy for ELSC, SCA and a random pairing algorithm as
a function of the number of predictions that each algorithm
was asked to make. Figure 3 shows the average values of these
138 traces. Again, we see that ELSC on average outperforms
SCA, although for both algorithms the performance is modest
and the accuracy decreases rapidly as a function of the number
of predictions made.
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Inspection of Figure 2A and Supplementary Figures 2 and 3
suggests that focusing only on residue contacts does not
take full advantage of the power of either ELSC or SCA. In
Figure 2A, for example, there are a significant number of high
scoring residue pairs that are well below the 50th percentile
of distance (horizontal dark gray line) but are not below the
light gray 8 Å cutoff line. It is clear that true co-variance
can happen outside of the residue contact cutoff. In order to
compare the algorithms in a way that takes into account co-
variation that happens at distances greater than 8 Å, we looked
for a way to average pair distance and algorithm score across
all 138 Pfam families. To account for the fact that different
alignments can produce very different ranges of co-variance
scores, we converted scores for both algorithms to percentiles
and plotted this on thex-axis. Because different proteins have
different average volumes, we likewise converted the pair dis-
tance scores to percentiles and plotted this percentile on the
y-axis. We then asked for both algorithms what the relation-
ship is between score percentile and pair distance percentile.
Supplementary Figures 5 and 6 online show the results of this
analysis for each of the 138 protein families in our study, and
supplementary Figure 7 shows the average of these 138 results
for both algorithms. By this metric, the ELSC algorithm has,
on average, more power than the SCA algorithm as the most
highly co-varying pairs of residues tend to be closer to each
other for ELSC than for SCA.

CONCLUSION
In this study, we have introduced a new perturbation-based
correlated mutation algorithm. A major motivation for this
work is the intriguing possibility that analysis of evolution-
ary co-variation may reveal functional couplings in a protein
that are not immediately apparent from an analysis of residue
proximity. Although it was not our goal in this work to pre-
dict residue contactsper se, we have used contact prediction as
a quantifiable surrogate measurement with which to compare
the performance of two co-variation algorithms. By the metric
of either prediction of residue contacts (Fig. 3) or the probab-
ility that a random algorithm could match the performance of
the top scoring residue pairs (Fig. 2B), our ELSC algorithm
outperformed the previously described SCA algorithm on a set
of 138 Pfam families. It has been argued elsewhere (Fodor and
Aldrich, 2004) that a small part of the performance differences
between correlated mutation algorithms in finding physically
close residue pairs can be explained by the preference of some
correlated mutation algorithms to choose more conserved
residues, which tend to be more clustered. However, the aver-
age sequence entropy,Hi (see Detailed methods section), of
the top 75 scoring pairs of residues for all 138 Pfam famil-
ies was 1.61± 0.35 (mean± SD) for ELSC and 1.60± 0.42
for SCA. The fact that ELSC and SCA give high scores to
co-varying pairs with similar levels of background conser-
vation rules out differences in background conservation as

an explanation for the difference in power between the two
algorithms.

A previous study (Fodor and Aldrich, 2004) evaluated a
number of other correlated mutation algorithms, two of which
(Gobelet al., 1994; Kass and Horovitz, 2002) are based on
an analysis of global MSA statistics rather than an analysis of
perturbation subsets. The ELSC method is most appropriate
to use when there is an experimental reason to create a sub-
alignment, such as a mutation at a given column position that
has been found to alter ligand binding, allosteric coupling or
conformational equilibria. In this case, the ELSC algorithm
might be used to predict residues that are energetically coupled
to the altered residue. If, on the other hand, one is approach-
ing an alignment with no a priori knowledge of experimental
perturbations, the use of a non-perturbation based algorithm
may be more appropriate. By choosing the most appropriate
algorithm for the problem at hand, one can maximize the odds
that a correlated mutation algorithm can be used to gain useful
insight and guide experimental analysis.
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