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The inherent complexity of thermodynamic coupling
in proteins presents a major challenge in understanding
and engineering protein function. Recent work has ar-
gued that the study of proteins can be simplified by the
use of correlated mutations in the evolutionary record
to locate a small subset of thermodynamically coupled
residues that participate in functionally important, evo-
lutionarily conserved energetic pathways. To test this
hypothesis, we examined the predictions of correlated
mutation algorithms for a number of proteins for which
coupling between residues has been determined by
analysis of double mutant cycles. We find that corre-
lated mutation algorithms can find residue pairs that
are physically close and that physically close residue
pairs tend to be thermodynamically coupled. We find
little evidence, however, for the hypothesis that thermo-
dynamic coupling is limited to the subset of evolution-
arily constrained residue positions.

When residues in a protein are thermodynamically coupled,
changing one residue affects the energetics of all coupled resi-
dues obscuring the interpretation of site-directed mutagenesis
experiments and complicating our ability to understand and
engineer protein function (1–3). A common technique for un-
derstanding thermodynamic coupling is the double mutant cy-
cle, in which the energetic independence of two residue posi-
tions is established if the sum of the free energy changes of two
independent mutations is equal to the free energy change of the
double mutant (4, 5). Even a modestly sized protein, however,
has hundreds of millions of possible double mutations that
render systematic laboratory study of double mutant cycles
impractical. How can an appropriate subset of residues be
chosen for experimental study?

An obvious place to look for guidance is the evolutionary
record. One approach to relating information in protein se-
quence databases to protein energetics involves the detection of
correlated mutations. If every time a given residue in a column
of an alignment changes, there is a corresponding change in
another column of the alignment, then the two corresponding
residue positions may be energetically linked and under selec-
tive pressure. In 1994, Horovitz et al. (6) proposed that coordi-
nated changes between two columns in a protein sequence

alignment predicted non-additivity in the results of the corre-
sponding double mutant cycle. In a series of papers, Ranga-
nathan and colleagues (7–10) have expanded on this idea to
argue that a correlated mutation algorithm could be used to
find “pathways of energetic connectivity” that “have emerged
early in the evolution of the protein folds and, much like the
atomic structure, are fundamentally conserved features of the
domain families” (7). If this hypothesis were generally true, it
would have profound consequences for experimental protein
science. Rather than attempting to perform experiments on
unmanageably complex networks of coupled residues, compu-
tational screens of aligned sequences could lead investigators
to the small subset of important residues that form “evolution-
arily conserved sparse networks” (8) of thermodynamically
linked energetic pathways.

In this study, we wanted to test the hypothesis that infor-
mation in multiple sequence alignments can generally be used
to find conserved energetic pathways in proteins. Toward that
end, we examined four published double mutant cycle data
sets. We found that correlated mutation algorithms predict the
results of only one of these four data sets. Our results argue
against the general principle that there are isolated pathways
of evolutionarily conserved energetic connectivity in proteins.

MATERIALS AND METHODS

The Gobel covariance algorithm (11) was implemented as previously
described (12). The SCA1 algorithm was implemented as previously
described (7, 13) except that when performing calculations for the PDZ
family, the (i,j) ordering was constrained so that the residue at the
equivalent position to position 76 reported by Lockless and Ranga-
nathan (7) was always in the i position. This was done so that our
results in Fig. 1D would correspond as closely as possible to Fig. 3C of
Lockless and Ranganathan (7). There are still small differences be-
tween our Fig. 1D and their Fig. 3C, which we believe can be explained
by differences in the alignments that were used. Lockless and Ranga-
nathan (7) created their own alignment with PSI-BLAST, while we used
the Pfam PDZ alignment. In addition, there are significant changes in
the description of the SCA algorithm and its implementation in the
Windows binaries distributed by the Ranganathan laboratory (see the
“Methods” section of Dekker et al. (13)), which may be a cause of some
of the differences between the two figures.

For all ��G values, the absolute value of the reported ��G was
taken. For the PDZ data set, the Pfam (14) PDZ alignment was down-
loaded, and the DLG4_MOUSE sequence was aligned using CLUST-
ALW (15) to the 1BE9 Protein Data Bank (16) structure. For the
Barnase-Barnstar complex the 1BRS Protein Data Bank crystal struc-
ture was used. Distances were calculated as the average C�-C� dis-
tance for each pair of residues of the AD, BE, and CF complexes. For the
Staphylococcal Nuclease data sets, the SNase Pfam alignment was
downloaded, and the NUC_STAAU sequence was aligned to the 2SNS
Protein Data Bank structure. The SNase alignment did not extend to
residue 7 of 2SNS. The 10 double-mutant cycle data points from Green
and Shortle (17), which involved residue 7, were therefore excluded
from Fig. 2, D and E, but not from Fig. 3. (Note that what we call ��G
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was referred to as ���G in the Green and Shortle paper (17)). For the
potassium channel data set, the Q9YDF8 sequence in the ion_trans
Pfam family was aligned to the 1ORQ crystal structure. Because the
Shaker sequence (CIKS_DROME) in the ion_trans Pfam alignment did
not extend to Shaker residue 366, the single data point for Leu366 3
Val476 was excluded from Fig. 2F. For all Pfam families, redundant
sequences with (�90% identity) were removed. Because we wanted to
include as much energy data as possible, we filtered the Pfam align-
ments in a slightly less rigorous way than in our previous study (12);
specifically, we considered lowercase symbols to be valid Pfam residues,
and we only excluded a column from the analysis that had greater than
90% gapped residues. These changes from our previous methods had
virtually no effect on the overall power of the covariance algorithms
(data not shown).

Note that we excluded one residue pair from the PDZ double mutant
data set. In their paper, Lockless and Ranganathan (7) report data for
a double mutant V32I/H76Y. However, in the 1BFE and 1BE9 PDZ
crystal structures (from Doyle et al. (18) referenced as footnote 21 in the
Lockless and Ranganathan (7) paper), the equivalent position to Val32

is already an isoleucine. The nearest valine is 13 residues upstream.
Data from V32I/H76Y were therefore excluded from all our analyses.

RESULTS

Correlated Mutations as Predictors of Distance and Energy—
Before they were used in an attempt to map protein energetics
(7), it was recognized that correlated mutation algorithms find
pairs of residues that are close in physical space in a protein
structure (11, 12, 19–22). In a previous study (12), we observed
that a correlated mutation algorithm first described by Gobel et
al. (11) was able to use alignments from the Pfam (14) data
base to correctly predict physically close residue pairs in the
corresponding PDB structures at a statistically significant
level (p � 0.05) for over 91% of the 224 protein families we
studied. Fig. 1A shows pair distance as a function of the Gobel
covariance algorithm for a member of the PDZ binding domain
family. For each point in Fig. 1A, the value on the x axis
represents the degree of correlation between residue changes in
two columns of the PDZ multiple sequence alignment down-
loaded from the Pfam data base. The corresponding value on
the y axis is the C�-C� distance between the corresponding
residues in the 1BE9 crystal structure. As we would expect
from our previous work on other protein families (12), the most

highly covarying pairs of residues (to the right on the x axis)
tend to be physically close (to the bottom of the y axis).

With unlimited resources, an evaluation of the hypothesis
that the results of correlated mutation algorithms can predict
the results of double mutant cycle experiments would measure
the non-additivity of double mutant cycles for every possible
residue pair in a protein. Such an experiment is, of course, not
feasible. To evaluate their hypothesis that “pathways of ener-
getic connectivity” are “fundamentally conserved features of
the domain families”, Lockless and Ranganathan (7) had to
choose a subset of residue pairs for which to create double
mutants for the PDZ family. In their study, Lockless and Ran-
ganathan (7) introduced a novel correlated mutation algorithm,
which they called SCA for statistical coupling analysis. The
relationship between SCA covariance and pair distance for the
PDZ alignment and 1BE9 crystal structure is shown in Fig. 1B.
Because they were explicitly testing the power of a correlated
mutation algorithm, they chose a subset of residue pairs that
had a wide range of covariance scores under the SCA algorithm
(Fig. 1B, gray symbols).

In a previous study of 224 protein families (12), we found
that the SCA covariance algorithm tends to have less power
than the Gobel covariance algorithm in finding physically close
residue pairs. The PDZ family in Fig. 1, A and B, is no exception
to this trend, as the most highly covarying residue pairs under
Gobel covariance (Fig. 1A) are closer together than the most
highly covarying pairs under SCA (Fig. 1B). Nonetheless, de-
spite these differences, the subset of residue pairs chosen for
experimental analysis by Lockless and Ranganathan (7) (Fig.
1, A and B, gray symbols) have a wide range of scores under
both algorithms. The relationship between ��G, the non-addi-
tivity of double mutant cycle experiments, and covariance is
shown for the Gobel algorithm in Fig. 1C and for SCA in Fig.
1D. We see that under both of these algorithms, these two
values are nicely correlated. These correlations provide evi-
dence for the hypothesis that energetic coupling is under tight
evolutionary control.

We were curious as to how well this relationship between
correlated mutations and the non-additivity of double mutant
cycle experiments would hold up when applied to other double
mutant cycle data sets. The labor-intensive nature of perform-
ing double mutant cycles has led to the creation of few data sets
large enough to have the potential to generate a meaningful
correlation. Moreover, many double mutant cycle data sets are
between proteins and their peptide or protein binding partners
(23–25), which makes them unsuitable for a correlated muta-
tion analysis that needs to be performed on a single protein
alignment. There are, however, two appropriately large sets of
double mutant cycles based on the folding energetics of Staph-
ylococcal Nuclease (1, 17). In these data sets, free energy dif-
ferences between the folded and unfolded state of Staphylococ-
cal Nuclease were estimated by monitoring fluorescent changes
as the protein was denatured using guanidine hydrochloride.
In addition, there is a double mutant cycle data set based on
the energetics of pore opening of the Shaker K� channel in
which currents were recorded across a range of voltages, and
free energy differences between the open and closed state were
generated from a model that assumed that mutations effect a
single opening transition (26). Fig. 2, A and B, show that, as we
would expect, the most highly covarying residue pairs under
Gobel covariance tend to have small C�-C� distances in a
corresponding crystal structure for Staphylococcal Nuclease.
While there is no crystal structure of the Shaker potassium
channel, Fig. 2C shows that the most highly covarying residue
pairs under Gobel covariance are physically close in the 1ORQ
crystal structure, a prokaryotic homologue (KvAP) of the

FIG. 1. Distance and energy as a function of SCA and Gobel
covariance for the PDZ binding domain. A and B, C�-C� distance
as a function of Gobel (A) and SCA (B) covariance. The probability that
a random pairing algorithm could do as well in finding residues below
the 50th pair distance percentile for the top 75 pairs of residues is p �
10�11 for Gobel covariance and p � 0.005 for SCA covariance. Gray
symbols are the residue pairs for which there are double mutant cycle
data. C and D, the Lockless and Ranganathan (7) double mutant cycle
data set as a function of Gobel (C) and SCA (D) covariance. Spearman
rank correlation scores are given in Table I.
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Shaker potassium channel. For all three data sets, however,
there is no correlation between the non-additivity of free en-
ergy and the degree of correlated mutations (Fig. 2, D–F; Table
I). This lack of correlation argues against the idea that double
mutant cycle experiments reliably lead us to energetic path-
ways that are fundamentally conserved features (7) of domain
families.

The results shown in Fig. 2 are for the Gobel covariance
algorithm, which in a previous survey of four covariance algo-
rithms displayed the most power (12). In addition to the Gobel
covariance method, we examined the ability of other covariance
algorithms, including the SCA algorithm (7, 8), to predict the
results of double mutant cycle experiments. We found a similar
level of performance from all of the algorithms that we exam-
ined (Table I). It therefore seems unlikely that our results can
be explained by our choice of a particular covariance algorithm.

A potential source of error in these methods is the multiple
sequence alignments fed to the covariance algorithms. If there
were biases or errors in the construction of the Pfam align-
ments that we used, it might explain why correlated mutation
algorithms failed to predict energetic coupling. However, as can
be seen in the top panels of Figs. 1 and 2, the Gobel correlated
mutation algorithm was able to use the Pfam alignments to
successfully predict physically close residue pairs. The proba-
bility that a random pairing algorithm could do as well as Gobel
covariance in finding residues below the 50th pair distance
percentile for the top 75 pairs of residues is p � 10�7 or smaller
for the families shown in Figs. 1A and 2, A–C. The fact that the
information in the alignments can successfully be used to dis-
cover close residue pairs suggests that the use of Pfam align-
ments is appropriate for the problem at hand and argues
against errors or biases in these alignments causing the poor
correlations observed in Fig. 2, D–F.

Distance as a Predictor of Energy—Why is there such a
striking correlation for the PDZ family (Fig. 1, C and D), while
the other three data sets show no correlation (Fig. 2, D–F)?
Because the PDZ data set was created to explicitly test the
results of a correlated mutation algorithm, some of the PDZ
residue pairs that were chosen have high covariance ranks
(Fig. 1, A and B, gray symbols). For the other protein domains,
none of the chosen residue pairs ranked among the most highly

covarying residue pairs (Fig. 2, A–C, gray symbols). As we see
in the top panels of Figs. 1 and 2, and has been shown repeat-
edly in the literature, pairs of residues with the highest scores
under correlated mutation algorithms tend to be physically
close (11, 12, 19–21). The forces that can generate thermody-
namic coupling in proteins also tend to work over fairly short
distances (1). For example, a recent study estimates that helix
interactions are more likely to occur when �-carbons are less
than 12 Å apart (27). It therefore seems likely that at least part
of the reason that a covariance algorithm is able to find coupled
residues is that highly covarying residue pairs tend to be phys-
ically close.

To investigate the relationship between distance and ther-
modynamic coupling, we looked for double mutant cycle data
sets for which there was a know structure (�90% sequence
identity) and for which energetic coupling data were reported
across a wide range of distances (up to at least 15 Å). Fig. 3
shows the results for three such double mutant cycle data sets.
The blue symbols are from a Barnase-Barnstar double mutant
cycle data set (25). While we could not perform a correlated
mutation analysis of the complexed Barnase-Barnstar pro-
teins, since such an analysis requires an alignment from a
single protein family, there is a crystal structure of the Bar-
nase-Barnstar complex available that allows for a plot of dis-
tance versus non-additivity in energy. The red symbols in Fig.
3 are from the PDZ study (7) shown in Fig. 1. The black symbols
are from the Staphylococcal Nuclease study (17) shown in Fig.
2D. There is a consistent trend across all three data sets in Fig.
3 with pronounced thermodynamic coupling much more likely
to occur if the C�-C� distance of the residue pair is less than
�12 Å.

Our observation that thermodynamic coupling is largely lim-
ited to physically close residue pairs is not surprising. Indeed,
a number of double mutant cycle studies (23, 24) have argued
that thermodynamic coupling can be used to find physically
close residue pairs in protein-peptide complexes for which
there is no available crystal structure. Nonetheless, the inter-
pretation of the relationship between energetic non-additivity
and distance can vary quite a bit from study to study. For
example, the Barnase-Barnstar (25) study (data plotted as blue
symbols in Fig. 3) concluded that “coupling energy between two

FIG. 2. The relationship between non-additivity in free energy, Gobel covariance, and C�-C� distance for the Green and Shortle
(17) Staphylococcal Nuclease data set (A and D), the Chen and Stites (1) Staphylococcal Nuclease data (B, E) set, and the Yifrach
and MacKinnon Shaker (26) potassium channel data set (C, F). A–C, pair distance as a function of Gobel covariance score. Gray symbols are
the residue pairs for which there are double mutant cycle data. The probability that a random pairing algorithm could do as well in finding residues
below the 50th pair distance percentile for the top 75 pairs of residues is p � 10�13 for Staphylococcal Nuclease (A and B) and p � 10�7 for the
K� channel KvAP (C). See the “Methods” section of Fodor and Aldrich (12) for the details on calculating these probabilities. D–F, non-additivity
in free energy as a function of Gobel covariance scores. Spearman rank correlation scores are given in Table I.
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residues was found to decrease with the distance between
them.” The Staphylococcal Nuclease study (17) (data plotted as
black symbols in Fig. 3), on the other hand, came to the opposite
conclusion that there were patterns of interactions at “widely
separated positions.” It is apparent from Fig. 3, however, that
despite the different conclusions, the data from these two stud-
ies overlap a good deal.

Part of the evidence from Lockless and Ranganathan (7) for
the idea that correlated mutation algorithms can predict the
results of thermodynamic coupling is that the SCA algorithm
predicted a “set of energetically coupled positions . . . that in-
cludes unexpected long range interactions” and that “muta-
tional studies confirm these predictions” (7). This line of argu-
ment suggests that correlated mutation algorithms can find
energetically connected residues that could not be discovered
by examining close residues in crystal structures. However, in
the PDZ data set, the residue pairs that showed non-additiv-
ity � 1.5 kcal/mol were within 8 Å of each other and the only
residue pair � 20 Å apart showed very little energetic connec-
tivity (Fig. 3, red symbols). Moreover, the PDZ distance versus
energy data (Fig. 3, red symbols) can be roughly superimposed
with the two other double mutant cycle data sets (Fig. 3, blue
and black symbols). This suggests that the “long range” ther-
modynamic coupling observed in the PDZ experiment was not
unusual and that across all three data sets pronounced ther-
modynamic coupling is more likely to occur among close resi-
dues. Correlated mutation algorithms reliably find physically
close residue pairs (12) but do not reliably find energetically
coupled pairs (Fig. 2, D–F). The most parsimonious explana-
tion, therefore, of the ability of correlated mutation algorithms
to discover energetically linked residues is that correlated mu-
tation algorithms discover physically close residues. The close
residues discovered by correlated mutation algorithms, how-
ever, are not part of a “sparse network” (8) of energetically

linked residues. Rather, any algorithm that chooses a set of
physically close residues might detect thermodynamic cou-
pling. In particular, it has been demonstrated repeatedly (12,
28–30) that highly conserved residues also tend to cluster
together in the protein core. We would expect, therefore, that
these clustered sets of conserved residues, like the clustered
sets of covarying residues, would tend to be thermodynamically
coupled.

DISCUSSION

Conserved columns in multiple sequence alignments have
successfully been used to find buried residues in the protein
core (30). It has also been found that mutation of conserved
residues is often associated with disruption of protein function
and disease causing phenotypes (31). Despite these successful
applications of sequence information to predicting protein
structure and function, attempts to relate the evolutionary
record to protein energetics have been controversial. For exam-
ple, it has been proposed that conserved residues are more
likely to participate in the structure of the folding-unfolding
transition state (32, 33). However, attempts to relate the im-
pact of a mutation on the stability of the transition state to the
degree of conservation of that residue position has found little
significant correlation (34, 35). In discussing these results,
Plaxco et al. (35) noted that while “sequence alone encodes the
three-dimensional structure of a protein and the rate with
which that structure is formed . . . protein folding kinetics are
relatively insensitive to fine details of sequence and are, in-
stead, defined by sequence through its effects on more global
parameters such as topology . . . and, to a lesser extent, stabil-
ity.” In our study we found that the results of correlated mu-
tation algorithms predicted the degree of thermodynamic cou-
pling for only one of four data sets. It therefore seems
reasonable to take a similar line of arguments regarding ther-
modynamic coupling. We argue that, as appears to be the case
for protein kinetics, thermodynamic coupling may be insensi-
tive to the fine details of sequence. Rather, the global protein
fold moves some residues close to other residues and a subset of
those residues within �12 Å of one another are coupled (Fig. 3).
Conservation and covariance algorithms reliably find physi-
cally close sets of residues (12, 20), and we would expect,
therefore, that because they tend to be close, conserved and
covarying residue positions would also tend to be thermody-
namically coupled. Thermodynamic coupling, however, does
not appear to be limited to the subset of highly covarying
residue positions.
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